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Absfnet. We present a (2+ I)-dimensional Skyrme-like model with a symmetry-breaking 
potential, which in R, has charge-n instanton solutions, and in the Static limit in R, a 
sphaleron-like solution. 

While the quantum tunnelling between topologically distinct vacua of the Weinberg- 
Salam (gauge-Higgs) field theory is known to be negligible [l], it is possible that at 
sufficiently high temperatures transitions may occur essentially classically via sphaleron 
field configurations, leading to an appreciable violation of baryon-number conservation. 
This mechanism was first suggested by Manton [2] and was further developed by 
Klinkhamer and Manton [3]. 

Using the sphaleron field configuration of the Weinberg-Salam model, which was 
previously known as the DHN solution [4], the estimation [5] of the baryon-number 
violation of electroweak theory can be a task of considerable complexity in quantum 
theory. For this reason, much attention has been devoted to carrying out this programme 
employing simplified toy models in lower (than physical) dimensions [6-81. Notable 
among these models are those in 1 + 1 dimensions, where the sphaleron in question is 
a constant static solution on s', of the 44 model and the sine-Gordon model respectively 
[7]. In the latter example [SI, an extended version of the O(3) sigma model in two 
dimensions has been proposed as the corresponding dynamical system in 1 + 1  
dimensions. In both these models [7,8], as also in the original DHN solution on R,, 
the sphaleron is an unstable field configuration with finite energy. The energy is the 
d-dimensional integral of the static field configuration, namely d = 3 for the DHN case, 
and d = 1 for the toy models of [7] and [8]. The sphaleron field's energy is then 
regarded as the energy hamer between the topologically distinct vacua of the non-static 
theory. In all these models, the topological charges characterizing the distinct vacua 
are defined by the usual topological invariant. In the Weinberg-Salam theory, this is 
taken to be the integral of the Chern-Pontryagin density on R4, while in the O(3)  
model of [8], the topological charge is the winding number of the order-parameter 
field defined on R2. In both cases, the dynamical models on d + 1 dimensions, support- 
ing stable instanton field configurations, differ from the dynamical models on d 
dimensions, which support unstable sphaleron field configurations. 
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The purpose of the present letter is to propose a new model in 2+ 1 dimensions, 
which supports stable instanton field configurations on RI, and in the static limit 
supports unstable sphaleron field configurations on R,. As such, it is an intermediate 
example with d = 2 between the DHN case [4] with d = 3 and the soliton cases [7,8] 
with d = 1. This toy-model aspect, though, is not the main reason for proposing it. Its 
most important property is that, unlike the d = 1 and d = 3 examples discussed above, 
the instanton and sphaleron-like field configurations are supported as solutions by 
one and the same model. 

Having referred to the analogy between our (2+l)-dimensional model, and the 
(3 + 1)- and (1  + 1)-dimensional models [2,3,7-91 with sphaleron solutions, we should 
note that in fact our model bears much closer analogy with the (3+1)- 
dimensional model [2-4]. This is because in the latter case [2-41 and our case, the 
static models which have finite energy unstable solutions, are defined on W, and W2 
respectively. By contrast, in the (1 + 1)-dimensional cases [7,8], the static model with 
unstable solutions is not defined on W,, but rather on S' .  This is because the latter, 
be it the b4 model [7] or the sine-Gordon [8], has only stable solutions on R I ,  while 
the sphaleron solution is required to be unstable. The instability in these cases can be 
achieved [7] by defining the models in question on SI instead of RI. 

To help us amve at our model, we shall first note a common feature of both the 
DHN and the extended-O(3) model sphalerons. In each case, respectively in d = 3 and 
d = 1, the scaling properties of the models are consistent with there being finite energy 
solutions. Such solutions could be topologically stable if there were topological 
inequalities supplying lower bounds to the energy integrals. In tum, such topological 
inequalities can be found only for specific field-multiplets defining the dynamical 
coordinates. Specifically, for the SU(2) Yang-Mill-Higgs model on W,, such a topologi- 
cal charge (the monopole charge) can be defined if the Higgs field is in the adjoint 
representation of SU(2), and, for the soliton model in one dimension, such a topological 
charge (the kink number) can be defined if the field variable consists of one real scalar 
quantity. The (unstable) sphaleron solutions on the other hand do not occur in the 
two models just described. Instead in the DHN case [4], the Higgs field is an isospinor 
and consists of four real components as opposed to the three of an adjoint representation 
Higgs, and in the extended-O(3) model case [8], the order parameter has two real 
components as opposed to the single component of the scalar field of the soliton model. 
In each case (d = 3 and I ) ,  the additional component of the dynamical field variable 
serves to parametrize the non-contractible orbit through the instability point. 

In the light of these observations, we proceed to consider the model [9] on R2, 
i, j = 1,2, 

where Q is a complex scalar field and q2 is the (absolute) scale. V is a symmetry 
breaking potential, andf is a symbolic function representing the quadratic kinetic term 
la i~12.  Lfn is regarded as the static limit of a Lagrangian 2 in 2 +  I dimensions. 

( 1 )  9 n -. - :(ia,iQajiQ*)2+f(V2-lQ12, lJ id2)+ v(V2-lQlz) 

It was shown in [9] that subject to the asymptotic condition 

the volume integral of (1) is minimized by topologically stable field configurations, by 
virtue of the topological inequality 

9 n d 2 ~ a 2 i ~ g  flJiQJjQ*d2X. (3) I I 
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Following our above descriptions of the d = 3 and d = 1 sphalerons, we modify the 
model (1) by augmenting the dynamical coordinate Q with an additional component 
4,. Thus, in place of Q = 4, +i&, our new field variable is @ = +. U in terms of the 
Pauli spin matrices U. This yields 

where we use the notation Qi:= Ji@ and at:= [@,, Q j ] .  Again f is a symbolic function 
representing the, now non-Abelian, quadratic kinetic term @;. One should note that 
the scaling properties of the integral Of (4) over W2, are still consistent with the existence 
of finite energy solutions, but now we have lost the topological inequality (3). This is 
so because the corresponding topological charge density E$ tr n a ; @ J j @  can be seen 
not to be a total divergence, in contrast to the density on the right-hand side of (3) 
defined in terms of the complex field Q. As a consequence, we would expect any finite 
energy solutions to the equations of motion that may be found to be unstable. But this 
is precisely what would be expected of a sphaleron field, especially if we remember 
that the source of this new instability is the additional component of the multiplet @, 
over and above the number of degrees of freedom of the old field Q in (1). We adopt 
(4) therefore as the static version of a candidate for a (2+ 1)-dimensional model with 
instanton and sphaleron-like solutions, and proceed to verify these properties. For 
technical reasons, we consider the instanton properties first. 

Instantons. It is useful to specialize the Lagrangian (4), considered on W,, to analyse 
the stability of the instanton solutions. This problem was considered in some detail, 
and analysed in [lo]. To avoid the ubiquity of models afforded by the symbolic 
functions f and V in (41, we specialize to some specific choices of these functions. 

To start with, according to the virial theorem or scaling argument, it is necessary 
to keep only the first and second, or the first and third, terms in 

3 = -4 tr @:"+f(~'- @*, @:) + v( ?'- 0') ( 5 )  

to enable finite action solutions on W,. Here p =  1 , 2 , 3  labels the coordinate x+ of R,. 
However, as explained in detail in [IO, 111, in the absence of the second term f; 
topological stability would dictate the inclusion of an additional sextic kinetic term 
@:+, which we wish to avoid here. We therefore must retain the second termf in (5). 
Topological stability does not demand the presence of third term V. Nevertheless, we 
shall retain V, in anticipation of a similar scaling argument, for the static Lagrangian 
-Yo of (4), in W,. Retaining bothfand  V in (5), we opt to specialize (5) to the simplest 
sub-model arising from the direct descent from the eight-dimensional conformally 
invariant generalized Yang-Mills system [ 113. The distinguishing feature of this model, 
other than its relative simplicity, is that it involves no dimensional constants apart 
from ihe consiani 7 seiiing ihe scaie or' ihe fieid @. Our choice is 

(5') z= -4 tr@:,+ftr{S, @,)'+tr s4 
where S:= T'-@' and {,) means anticommutation. We stress that our choices for the 
symbolic function f and of V in (6) are not unique. 

The only term in (5) in whose definition we have no freedom is the quartic kinetic 
term atv. For both the other terms f and V, namely the quadratic kinetic term and 
the potential respectively, there is considerable freedom in their definitions. The only 
constraint in exercising this freedom is the necessity to obtain a topological inequality 
like (7) below. The specific choice (5') is privileged only in that it happens to be'the 
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model directly arrived at by descending from the corresponding higher-dimensional 
gauge field model 1111, and as a result involves no other dimensional constants, apart 
from the absolute scale 7. Otherwise, for the simplest version of ( S ) ,  one can choose 

f = A,@: V = (6) 
where A , ,  A2 are some (coupling) constants with appropriate dimensions. 

Both (59, and the singlet model obtained by the choice (6) in ( 5 ) .  have the additional 
symmetry @ +  g@g-’ ,  where g is a rigid SU(2) transformation as well as under the 
discrete symmetry @ +  4. These symmetries would definitely have to be taken into 
account in the quantization of these systems, but this does not form part of our 
considerations here. We refer to these symmetries here, and especially the discrete 
one, because it is of some consequence below, in characterizing the static sphaleron-like 
solutions in W2. 

Returning to the model (57, the topological stability of the instanton is then a 
consequence of the inequality 

Adding the positive-definite term 2 tr S4 to the left-hand side of (7) without disturbing 
the inequality, and expanding (7), we have 

the right-hand side of which can be shown to be a total divergence [IO, 111, whose 
integral, subject to the asymptotic condition 

guarantees a non-zero lower bound for the action which is proportional to a winding 
number n. Thus the model (6) is endowed with a stable instanton field configuration 
in W,. 

Since the instanton field configurations of this (and other) model(s) on W, were 
discussed in some detail in [ 101, it suffices here to recall that these instantons correspond 
to topologically distinct vacua characterized by a winding number n, which in this case 
is the topological charge given (up to normalization) by the integral of the right-hand 
side of (8). The n-dependence of these field configurations is given by [IO] 

4, = + ( R )  sin 0 cos nrp 

+ 2  = 4( R )  sin 0 sin nq 

4, = $ ( R )  COS e 
(10) 

where R = G, 0 and rp are the polar and azimuthal angles in three dimensions, 
and 4, defines @ = $+us, 0 and rp parametrize both the field and the space S 2 c  R , .  

All above considerations (7)-(IO) can be made even more simply for the choice of 
f and V in (9, given by (6). 

Sphaleron-like solution. The static version of (59, defined on R2, 

20= -f tr@’,+f tr{s, ~ ~ ] ~ + t r  ? (11) 

will now be shown to have a sphaleron-like solution. First we recall that, according 
to the scaling argument, the equations of motion for (1  1) can have finite energy solutions 
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irrespective of the absencefpresence of the second term quadratic in Di. We also note 
that now we have no topological inequality analogous to (8), so that the finite energy 
configurations are non-topological. 

We consider the following ansatz for the (unstable) sphaleron-like field configur- 
ation 

(12) 

where r2 = xixi ( i  = 1,2), while p is a constant which causes the instability of the energy 
integral (15) below. As such, this parameter p is analogous to the angular parameter 
which characterizes the non-contactible loop (NCL) of the DHN sphaleron [2,3]. It is 
however different from the corresponding parameter of the DHN case, because our 
static field (12) is not a NCL. This is so because @-(p = 0) = vu, (since g“= 1, cf (21) 
below), while @“(p = n) = -qu3. That is, as p varies between 0 and n the vacuum 
@” does not go back to its original value. The reason that this happens is because of 
the discrete symmetry @ +  -@ referred to above. Thus we do not have a NCL in (12), 
and for this reason, we refer to this solution only as a sphaleron-like solution. 

Unlike the NCL of the DHN sphaleron [2,3], which represents the path between 
any vacuum and itself, our sphaleron-like solution represents the path between two 
distinct vacua @“(O) and V ( n )  = -Qm(0). Nevertheless, we hope that this solution 
is physically relevant since for p = a/ 2 it corresponds to the top of the energy barrier 
between these vacua. The actual sphaleron-like field (12) with p = n/2 I s  an unstable 
solution, since it maximizes the energy functional. Before proceeding to demonstrate 
this instability, we must check the consistency of this ansatz. This involves the 
verification that the Euler-Lagrange equations of the system (11) on R2 

(13) 

for the field configuration (12), are solved by the Euler-Lagrange equations for the 
one-dimensional subsystem with Lagrangian L[1; g ] ,  defined by S = 9 r  d r  dp = 
2.rrJLdr.or 

Uf( r ) , f ’ (*) ;  g(r) ,g’(r) l -2?rr~[f;f’;  g,g’l (14) 

in terms of the coordinates 1; g and their ‘velocities’ f’-df/dr and g‘. This is a very 
straightforward if tedious task, and we limit ourselves to stating that indeed the 
Euler-Lagrange equations arising from the variations o f f  ( r )  and g(r), respectively, 
for (14), solve the equations (13) for the field configuration (12). These equations are 
rather lengthy expressions, and are not recorded here, but we confirm that the ansatz 
(12) is consistent. 

The existence [I21 of the sphaleron field configuration (12) then follows from the 
positive definiteness of the energy integral 

@ =  u,vf (r) sin p cos n p + u 2 v f ( r )  sin p sin np+u3vg(r) cos p 

J i [ @ j ,  @+I+%;I{S, @i}, S }  =2{@, S 3 } - { @ ,  {@${ai, S}}} 

E [ ~ g , p ] = 4 n  ~~~[4~‘s in2p- (g ’ ’cos*p+I^ .2s in2p)  f’ 
r 

+2v6r[1-(g2cos2p+f2sin2p)]2 
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An intuitive demonstration of the fact that the energy functional (15) takes on its 
maximum value at p = n / 2  can be given as follows. If we set f ( r )  = g( r )  in (19 ,  all 
the cos2 p terms disappear, and the functional E [ f ,  g, 1.11 depends on p only through 
sin2 p. Then it is clear that E [ f ,  g, n/2] is the maximum value of E. This field 
configuration, however, is not a solution, as setting f = g  renders the ansatz (12) 
inconsistent. We expect, however, that for the actual solutions, this conclusion remains 
true. Strictly, a numerical verification here is in order, since we do not have g ( r )  and 
f ( r )  explicitly. We intend to perform this elsewhere, together with a more extensive 
analysis of lower dimensional ( d  < 3 +  1) models. 

There is, admittedly, a certain lack of rigour in the above argument for the instability 
of the solutions (12). It is clear from the energy integral (15) that for p = O  (and n). 
the first term, which is the contribution of the quartic kinetic energy, vanishes. The 
second term however, which is the contribution of the quadratic kinetic energy, does 
not vanish, but only loses one of its (positive definite) constituents. The rest, the 
potential energy contribution, is insensitive to the angle p. That the solution (12) is 
unstable owing to the p-dependence of (15), is not in question. What is strictly required 
however is that at p = 0 (and T), the energy integral should actually vanish. This we 
have not succeeded in showing rigorously, but see no obstacle to such a demonstration. 
In this respect, the integral (15) is exactly on the same footing as the energy integral 
of the DHN model, equation (29) of [12]. The vanishing of this integral was argued by 
Burzlaff [ 121, and is responsible for the instability of the DHN solution. Correspondingly, 
our energy integral (15), as also the integral (29) of 1121, would take on its maximum 
value for p = T / Z ,  as argued above. 

Topological charges. We have shown above that the (2+ I)-dimensional model given 
by the Lagrangian (6) is endowed with charge-n instanton solutions in R,, and its 
static version (IO) with a sphaleron solution in R2. As the latter is expected to be the 
energy barrier given by the static fields, between the topologically distinct vacua of 
the same model in R,, it remains for us to demonstrate this property by verifying that 
the (topological) charge integral 

(cf (8)) for a (2+ 1)-dimensional field configuration including the sphaleron field (12). 
can be evaluated as a surface integral whose value is controlled by the topological 
properties of the field @, in R2. To this end, we follow the procedure first suggested 
in [2, 31, and employed in [13]. This involves adopting a field configuration @(x, 1 )  
given by (12), where the functionsf and g depend on the radial variable r of R,, but 
where the coordinate p is taken to be a function of r, p = p( 1 ) .  Writing d p / d f  = G, the 
integral (16) 

q z  dt  d2xpz-1q, tr d t  d 2 x S ( @ , @ j @ j + @ ~ @ , @ j + @ j @ j @ ~ )  (17) 

can then be expressed as 

I \/1 4 .  II 
4 = 40 + 41 (18) 

(18a) 

- 
q0=27r r d r  I d t @  sinp;[gf’+(fg’-gf’) f cos2p] 
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f q,  = 2 a  1 r d r  d t  ri sin p - [(g' -f') cos' p + f ] 
r 

x [(fp'-gf') cosz w+gf'l. (186) 

Now allowing p( t )  to vary between 0 and T as f vanes from -m to +m, we can 
perform the integrals (18% b) as integrals with respect to cos p, between the limits 
c o s p ( f = i m ) = i l .  Theresult is 

qu=4a I," h,(r) dr  (19a) 

q,  = 47r jnm h,( r )  d r  (196) 

where both integrals can be evaluated simply by using the topologically meaniiigful 
boundary values off and g, by virtue of the fact that the functions h, and h ,  are given 
as the derivatives 

I d  
15 dr  

h ,  =--[gf2(g2+2f2)]. 

The integrals (19a, b) are then immediately evaluated using the asymptotic conditions 

s(m) = f ( m )  = 1 (21) 

which is consistent with the finite-energy condition 

trW- q2 
r-m 

for the field (12), analogous to the finite-action condition (9), for the field (10). The 
boundary condition at the origin of r is 

f ( O ) = O  (23) 

which is also the necessary condition for the single-valuedness of the field (12). This 
defines, up to normalization, the topological charge of the (2 + 1)-dimensional model 
(6) ,  which has charge-n instanton solutions (10) in R,, and in the static limit a sphaleron 
solution (12) in R,. Thus one can associate a finite value of the instanton (topological) 
charge with the (non-topological) sphaleron. 

This work was supported in part by GKSS (Geesthacht, Germany) and EOLAS (Dublin, 
Ireland). 
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